
1

 USER FRIENDLY HIGH PRODUCTIVITY COMPUTATIONAL
WORKFLOWS USING THE VISION/HPC PROTOTYPE

J.H. Unpingco

Ohio Supercomputer Center
Columbus, OH 43212

I. ABSTRACT
HPCs (high-performance computers) utilize multiple

(e.g. hundreds or thousands of) processors to compute
very large problems quickly by distributing the
computation across many processors in parallel. This
liberates problem conceptualization from the
memory/storage constraints of a single desktop
workstation. Unfortunately, the complexity of
programming HPCs is off-putting for new users.
Furthermore, most DoD users work from a Windows PC
so that learning Unix well enough to parallel program is
itself an obstacle. What is needed is a workflow by which
simplifies the programming task in a familiar
environment while leveraging the computational power of
HPCs.

VISION (Sanner, 2002) is a freely available, Python-
based, drag-and-drop visual programming environment
that programming for drawing flowcharts that encapsulate
the underlying programming complexity. This means that
computations are strung together by dropping and

connecting computational boxes on a canvas instead of
writing source code files. This is important for
productivity since productivity is dominated by the time
spent programming versus the time spent analyzing
results.

As a Python-based package, it is possible to embed
parallel computing features from the open source iPython
package into VISION to enable both visual programming
and parallel execution on remote HPCs. This paper
discusses the prototype we built at SSC-SD for a visual
parallel programming workflow based on VISION and
iPython for parallel computing using a Linux cluster as a
backend and a Windows XP workstation as the front-end.

II. INTRODUCTION
Productivity in scientific computing is dominated by

the time spent coding versus the time spent reflecting on
computed results. Insight is driven by how quickly
intuition can be vetted -- how fast a hunch can be tested
while pursuing a particular line of thought. Parallel
computing accelerates computing, but is notoriously

Fig. 1: VISION provides the drag-and-drop functionality for the network shown, which accomplishes a
signal filtering task. The individual nodes represent code fragments that are connected to implement a
particular computation. Everything is written in Python.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
User Friendly High Productivity Computational Workflows Using The
Vision/Hpc Prototype

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ohio Supercomputer Center Columbus, OH 43212

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

complex and daunting for non-specialists.
Further, in a team research setting, a few individuals

may have the requisite parallel programming skills and
are relied upon by others for these tasks. This is a
bottleneck and a deterrent to investigating new ideas. On
the other hand, this prototype breaks tasks down into
manageable computational units which others can easily
manipulate while coincidently freeing up the team
members who have parallel programming skills since
they can focus on maintaining smaller computational
units instead of the entire computation.

 Thus, improving scientific productivity by
facilitating parallel programming in a familiar Windows
PC environment for both specialists and non-specialists
was the main motivation for the VISION/HPC prototype.
The basic idea is to run VISION on the user’s Windows
workstation and have the embedded parallel tasks execute
on a remote backend. The key advantage is that the
graphic intensive GUI runs on the local workstation (and
is not served pixel-by-pixel through a slow network
connection) and the intensive computation runs on the
remote cluster (not overloading the local workstation). In
the following, we describe in detail how this was
accomplished and and examine a case-study that shows
how the VISION/HPC workflow operates in practice.

III. PROTOTYPE COMPONENTS

A. VISION
VISION is a freely available Python-based visual

computing environment from the Scripps Research
Institute in San Diego. It is part of a biomolecular
visualization toolkit distributed by the Institute. It is
entirely Python-based and all of the source code is
available. VISION reduces programming tasks to
dropping and connecting computing “nodes” onto a
flowchart. Fig.1 shows a VISION network that
accomplishes a signal filtering and visualization task.

Since VISION is entirely written in Python, it is
compatible with all other Python modules. In particular, it
works with the Scientific Python (SciPy) module, which
includes a wide variety of scientific computing codes (e.g.
matrix factorizations, data-fitting, statistical estimators).
Furthermore, VISION comes with several libraries (i.e.
sets of nodes) focused on specific categories (e.g. image
processing).

There are two mechanisms for adding customized
nodes to VISION. One can build nodes graphically by
starting with the "generic" node available in the standard
library. Alternatively, one can write Python scripts with
input/output interfaces represented as interconnection
"ports". Once these codes are developed, they become
drag-and-drop usable in the flowchart.

Once a node is developed, VISION provides a text-
editor interface for altering a node’s internal code and
other properties via the context menu (see Fig. 2). This
makes it easy to quickly change the underlying
computation and see immediate results. This is a very

important feature for a visual programming environment
and is unique to VISION; other environments require
everything to be created visually, whereas VISION allows
both visual programming and embedded text-based
editing. This means that legacy codes do not have to be
built visually, but can be pulled in through the text-editor

and selectively exposed to the visual environment by
choosing the input/output ports.

B. iPython
So far, we have discussed VISION as a tool for

simplifying the construction of computing tasks, but not
the parallel computing functions. That part is handled by

iPython (Pérez, 2007) which is an open source Python-
based development environment for interactive parallel
computing as opposed to batch-based parallel computing.
This means that, given an HPC configured for interactive
use, users can move data between nodes, assign
computing tasks, and monitor completion interactively.
Fig. 3 shows an example of an iPython session where

Fig. 3: Shows a sample iPython session where
Python statements are interactively executed
on remote processors.

Fig. 2.: The embedded Python code in every
node on the VISION canvas can be inspected an
edited from the context menu.

3

specific commands are executed all available nodes. This
means no more waiting for results to be computed, stored,
and then loaded since these are immediately in the same
iPython workspace.

Further, iPython’s parallel computing mechanisms
can be used directly from a standard Python script, which
thus allows it to be embedded into the VISION
framework. Variables can be defined and shared between
nodes using iPython. Thus, iPython has two modes of
operation – interactive and embedded – and both are
usable from within VISION, although we will only be
using the embedded mode for this prototype1.

C.Workflow Design
Given the mutual compatibility and open-design

philosophy of Python embodied in VISION and iPython,
the prototype was designed to call iPython commands
from within VISION. It is important to understand which
Python packages are going to be run on the backend

(SSC-SD Linux cluster) as opposed to the local
workstation (Windows PC) and to ensure that these are all
appropriately configured beforehand. Thus configured,
VISION can run on the PC and have its embedded nodes
compute on the backend and then return the reduced data
to the workstation for visualization or inspection. VISION
comes with a one-click installer for Windows and is not
necessary (although possible) to install VISION on the
backend. IPython comes as a standard Python
distributable and relies on the Twisted and Zope Python

1 Future develop plans include the ability to work in either mode,

which would be useful for debugging.

packages, which are available on both Windows PCs and
Unix/Linux platforms.

D. Platforms
VISION and iPython were installed on the Windows

XP workstation. SciPy and iPython and all subordinate
dependencies were installed on the Linux cluster backend.

E. Case Study: Array Processing Beampattern
As a case study, we implemented an array processing

beamforming problem. The problem is to compute the
electromagnetic antenna pattern generated by sources at
different arrival angles given certain array configurations.
Depending on the level of detail and the size of the array,
these patterns can be extremely computationally
intensive. Fig. 4 shows the essential code used to setup
the backend computations using iPython.

Note that the computationally intensive part derives
from computing a set of physics equations and is
accomplished in the runDetect function and that the
code shown in Fig. 4 is just an interface to it. This is a
good practice for modular design since the runDetect
script can be developed and tested separately outside of
the VISION/HPC framework. The main function of the
code shown in Fig.4 is to setup the intermediate pieces
from iPython
(i.e.,
ip.ipmagic),
which would be
typed in during
an interactive
session. This is a
key, but usually
overlooked
advantage to the
two iPython
modes because it allows the code shown above to be
developed interactively and then pasted into a script.

Fig. 5 shows the network for the beamforming
problem. The Vector3D widget comes with the
standard VISION toolset and provides the coordinates for

Fig. 5. The VISION network shown

computes the beampattern for a given array
configuration using the angle-of-arrival chosen
by dragging the arrow on the unit sphere in the
Vector3D widget. Multiple Linux clusters are
available via the chooseHost node. The
DialInt node tells the BeamPattern node
how many pieces to divide the problem into so it
can be distributed over the same number of
processors.

Fig.4. Python code showing how iPython is used
within a script to setup the runDetect
function, which computes the beampattern for
the array.

Fig. 6: Multiple Linux clusters
can be used as backends for
computation.

4

a unit vector at a position on the sphere shown. The
arrival angle of the source is selected on the unit sphere
by dragging the arrow. The act of dragging the point
shown on the widget provides a tactile connection to the
problem and is important for intuition building. The
resulting coordinates are input to the BeamPattern
node and the DialInt node tells the BeamPattern
node how many pieces into which the problem should be
divided so that it can be distributed over the same number
of processors

 We used the chooseHost node (see Fig. 5) to
switch the backend between two different SSC-SD
clusters (Lynx, Seahawk) to demonstrate the flexibility of
this approach. Once the host is chosen, the VISION/HPC
flowchart executes the computation on that host.

Fig. 7 shows the remainder of the embedded code in
the BeamPattern node, which includes the division of
the computational task across a given number of
processors. This is accomplished using the gather/scatter
mechanism that is built into iPython. The next block
merely pulls the various sub-pieces from the different
processors and assembles the final graph shown in the
next figure.

The graph in Fig. 8 shows the computed
beampattern. The horizontal white lines delineate the
computational stripes that have been computed on
different processors based on the value of the DialInt
node. This result is synthesized and presented on the
Windows PC, so no high-bandwidth graphics were
transmitted. In fact, only the commands to create the data
shown in each of the three pieces was transmitted.

IV. SUMMARY
We have established a Windows-to-HPC

computational workflow to enhance productivity using
the freely available VISION visual computing
environment in connection with the parallel computing
features of the iPython package. We examined the
performance of this workflow using an array processing
beamforming case study. The workflow prototype was
designed so that the graphically intensive GUI ran on the
local Windows PC workstation and the intensive
computations ran on the remote Linux cluster. The
reduced data product was returned to the local
workstation and rendered there, thus saving the slow

pixel-by-pixel transmission of the graphic through the
computer network.

V.BIBLIOGRAPHY
Pérez, Fernando and Granger, Brian E., 2007: IPython: A

System for Interactive Scientific Computing,
Comput. Sci. Eng., 9,21-29.

Sanner M.F., Stoffler D. and Olson A.J. 2002. ViPEr, a
Visual Programming Environment for Python.
Proceedings of the 10th International Python
conference. 103-115.

Fig. 8: The resulting beam pattern is shown. The
three horizontal stripes indicate that three
processors on the Linux cluster were used for the
computation. The prototype distributes the
computation across the three selected processors
and reassembles the result on the local
workstation. Note that the graphic is rendered on
the local workstation and not transmitted pixel-
by-pixel through the network connection (which
would be slow).

Fig. 7: Remainder of code in the Beampattern
node showing how the results are pulled in from
different processors and assembled into the final
graph.

